
Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 24 города Армавира

ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Учебно – методическое пособие

УДК 546(076.5)

Рецензент:

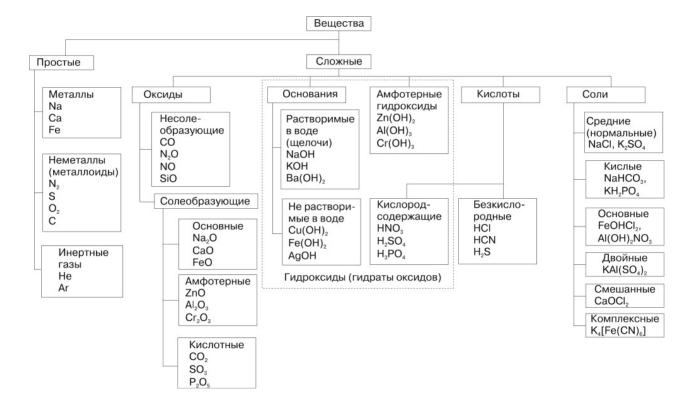
к.п.н. доцент кафедры МФ и МП Шермадина Н.А.

Основные классы неорганических соединений: учебно-методическое пособие по дисциплине «Химия» для учащихся 8 − 9 классов / Сост. Ю.В.Ткаленко – Армавир: МОУСОШ №24, 2023. – 67 с.

Целью учебно-методического пособия является оказание помощи ученикам в выполнении практических работ и самостоятельном изучении темы «Основные классы неорганических соединений».

УДК 546(076.5)

Учебно-методическое пособие рассмотрено и утверждено на заседании Школьного методического объединения учителей естественно — математического цикла, протокол N 1 от 24.08.2022 г.


Содержание

Введение	
1. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ ПО ТЕМЕ «КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕ!	НИЙ»
1.1 Оксиды	6
Номенклатура	6
Классификация оксидов	
Физические свойства оксидов	8
Химические свойства оксидов.	8
Получение оксидов	10
Применение оксидов	10
Таблица 1.1 – Соответствие некоторых оксидов, кислоти гидроксидов металлов	1
1.2 Основания	12
Номенклатура оснований	12
Таблица 1.2 – Амфотерные гидроксиды	12
Классификация оснований	13
Получение	13
Физические свойства	14
Химические свойства	14
Таблица 1.3–Температуры разложения некоторых гидроксидов металлов	16
1.3. Кислоты	16
Номенклатура	16
Таблица 1.4 – Важнейшие кислоты и их соли	16
Физические свойства	17
Кислоты бывают газообразные, жидкие и твердые. Некоторые имеют запах и цвет. Кислоты отличаются различной растворимостью в воде.	17
Классификация	17
Получение кислот	18
Химические свойства кислот	19
1.4 Соли	26
Классификация	26
Таблица 1.5 – Классификация солей по составу	27
Номенклатура	27
Физические свойства	28
Химические свойства	28
2. ЛАБОРАТОРНЫЙ ПРАКТИКУМ	37
2.1 Практическая работа №1	3
Решение экспериментальных задач по теме: «Основные классы неорганических соединений»	3
2.2 Типовые задачи по теме: «Основные классы неорганических соединений»	40
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	48
HDH HOWEITHE MA	51

Введение

Неорганическая химия - раздел химии, изучающий строение и химические свойства неорганических веществ.

Среди простых веществ выделяют металлы и неметаллы. Среди сложных: оксиды, основания, кислоты и соли. Все это сложные вещества (химические соединения), т.к. они образованы разными элементами. Классификация неорганических веществ построена следующим образом:

Валентность — это способность атома химического элемента образовывать определенное число химических связей с другими атомами.

Рассмотрим структурную формулу H2SO4, с помощью которой можно определить, как атомы связаны между собой в веществе:

$$H = 0 \qquad 0$$
 $S \qquad 1$
 $H = 0 \qquad 0$

Исходя из структуры, можно сделать выводы:

- атомы водорода Н имеют одну химическую связь, то есть одновалентны;
 - сера S имеет шесть химических связей, то есть шестивалентна;
- каждый атом кислорода О имеет две химические связи двухвалентен.

Валентность обозначается римской цифрой над знаком химического элемента в формуле. Например:

Na₂0

Атом натрия имеет валентность, равную 1, а атом кислорода — равную 2.

Различают элементы с постоянной и переменной валентностью. К элементам с постоянной валентностью, равной I, относят щелочные металлы (литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr), фтор F и водород H. Постоянную валентность II имеют щелочно-земельные металлы (кальций Ca, стронций Sr, барий Ba, радий Ra), а также бериллий Be, магний Mg, цинк Zn, кадмий Cd и кислород О. Постоянная валентность, равная III, характерна для элементов бора B и алюминия Al.

В настоящем учебно-методическом пособии содержатся сведения по основным классам неорганических соединений, включая определение, классификацию, номенклатуру, физические и химические свойства и способы получения. В приложении приведены примеры оформления отчета

по практическим работам, а также рисунки химического оборудования и лабораторной посуды. Для облегчения самостоятельной работы студентов в методические указания включены Периодическая система химических элементов Д.И. Менделеева, ряды активности металлов и силы кислот, таблицы растворимости кислот, оснований и солей в воде и взаимодействия между классами неорганических соединений.

1. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ ПО ТЕМЕ «КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ»

1.1 Оксилы

Оксиды — это неорганические соединения, состоящие из двух химических элементов, одним из которых является кислород в степени окисления -2. Единственным элементом, не образующим оксид, является фтор, который в соединении с кислородом образует фторид кислорода. Это связано с тем, что фтор является более электроотрицательным элементом, чем кислород.

Номенклатура

Названия оксидов составляют согласно схеме: <u>Оксид + название</u>

<u>элемента в родительном падеже + (степень окисления элемента, если она переменная)</u>

Например, P2O5 — оксид фосфора(V); указана степень окисления фосфора, т.к. она переменная. Na2O — оксид натрия; степень окисления натрия не указана, т.к. она постоянная.

В научно-технической и научно-популярной литературе можно встретить и *тривиальные* (исторически сложившиеся) названия оксидов.

Например:

 N_2O - веселящий газ,

 Al_2O_3 - глинозём,

 SiO_2 - кремнезём,

 SO_2 - сернистый газ,

 CO_2 (тв.) - сухой лёд,

 CO_2 - углекислый газ,

СО - угарный газ,

СаО - негашеная известь.

Данный класс соединений является очень распространенным. Каждый день человек встречается с разнообразными оксидами в повседневной жизни. Вода, песок, выдыхаемый нами углекислый газ, выхлопы автомобилей, ржавчина — все это примеры оксидов.

Классификация оксидов

Все оксиды, по способности образовать соли, можно разделить на две группы:

- 1. **Солеобразующие** оксиды (CO₂, N₂O₅,Na₂O, SO₃ и т. д.)
- 2. **Несолеобразующие** оксиды(CO, N_2O ,SiO, NO и т. д.)

В свою очередь, солеобразующие оксиды подразделяют на 3 группы:

- Основные оксиды (Оксиды металлов Na₂O, CaO, CuO и т д)
- **Кислотные оксиды** (Оксиды неметаллов, а так же оксиды металлов в степени окисления V-VII Mn₂O₇,CO₂, N₂O₅, SO₂, SO₃ и т д)
- **Амфотерные оксиды** (Оксиды металлов со степенью окисления III-IV а так же ZnO, BeO, SnO, PbO)

Данная классификация основана на проявлении оксидами определенных химических свойств. Так, основным оксидам соответствуют основания, а кислотным оксидам — кислоты. Кислотные оксиды реагируют с основными оксидами с образованием соответствующей соли, как если бы реагировали основание и кислота, соответствующие данным оксидам:

$$Na_2O + SO_3$$
 \longrightarrow Na_2SO_4
 $2NaOH + H_2SO_4$ \longrightarrow $Na_2SO_4 + 2H_2O$

Аналогично, амфотерным оксидам соответствуют амфотерные основания, которые могут проявлять как кислотные, так и основные свойства:

$$Z_{nO} + 2HC1 \longrightarrow Z_{nC1_2} + H_2O$$

$$Z_{nO} + 2KOH \longrightarrow K_2Z_{nO_2} + H_2O$$

Химические элементы проявляющие разную степень окисления, могут образовывать различные оксиды. Чтобы как то различать оксиды таких элементов, после названия оксиды, в скобках указывается валентность.

$$CO_2$$
 – оксид углерода (IV)

$$N_2O_3$$
 – оксид азота (III)

Физические свойства оксидов

Оксиды весьма разнообразны по своим физическим свойствам. Они могут быть как жидкостями (H_2O), так и газами (CO_2 , SO_3) или твёрдыми веществами (Al_2O_3 , Fe_2O_3). Приэтом оснОвные оксиды, как правило, твёрдые вещества. Окраску оксиды также имеют самую разнообразную — от бесцветной (H_2O , CO) и белой (ZnO, TiO_2) до зелёной (Cr_2O_3) и даже чёрной (CuO).

Химические свойства оксидов

• Основные оксиды

Некоторые оксиды реагируют с водой с образованием соответствующих гидроксидов (оснований):

Основные оксиды реагируют с кислотными оксидами с образованием солей:

$$Na_2O + CO_2 \longrightarrow Na_2CO_3$$

Аналогично реагируют и с кислотами, но с выделением воды:

$$Na_2O + H_2CO_3$$
 \longrightarrow $Na_2CO_3 + H_2O$

Оксиды металлов, менее активных чем алюминий, могут восстанавливаться до металлов:

$$CuO + H_2 \longrightarrow Cu + H_2O$$

• Кислотные оксиды

Кислотные оксиды в реакции с водой образуют кислоты:

Некоторые оксиды (например оксид кремния SiO2) не взаимодействуют с водой, поэтому кислоты получают другими путями.

Кислотные оксиды взаимодействуют с основными оксидами, образую соли:

Таким же образом, с образование солей, кислотные оксиды реагируют с основаниями:

Если данному оксиду соответствует многоосновная кислота, то так же может образоваться кислая соль:

Нелетучие кислотные оксиды могут замещать в солях летучие оксиды:

$$SiO_2 + Na_2CO_3$$
 \longrightarrow $Na_2SiO_3 + CO_2$

• Амфотерные оксиды

Как уже говорилось ранее, амфотерные оксиды, в зависимости от условий, могут проявлять как кислотные, так и основные свойства. Так они выступают в качестве основных оксидов в реакциях с кислотами или кислотными оксидами, с образованием солей:

$$ZnO + 2HC1 \longrightarrow ZnCl_2 + H_2O$$

И в реакциях с основаниями или основными оксидами проявляют кислотные свойства:

$$ZnO + 2NaOH \xrightarrow{t^{\circ}} Na_2ZnO_2$$
 $ZnO + 2NaOH + H_2O \longrightarrow Na_2[Zn(OH)_4]$

Получение оксидов

Оксиды можно получить самыми разнообразными способами, мы приведем основные из них.

Большинство оксидов можно получить непосредственным взаимодействием кислорода с химических элементом:

$$2H_2 + O_2 \longrightarrow 2H_2O$$

$$2Cu + O_2 \longrightarrow 2CuO$$

При обжиге или горении различных бинарных соединений:

$$CS_2 + 4O_2 \longrightarrow CO_2 + 2SO_3$$

Термическое разложение солей, кислот и оснований:

$$CaCO_3 \xrightarrow{t^0} CaO + CO2$$

$$2Al(OH)_3 \xrightarrow{} Al_2O_3 + 3H_2O$$

$$4HNO_3 \xrightarrow{} 4NO_2 + O_2 + 2H_2O$$

Взаимодействие некоторых металлов с водой:

$$Zn + H_2O \longrightarrow ZnO + H_2$$

Применение оксидов

Оксиды крайне распространены по всему земному шару и находят применение как в быту, так и в промышленности. Самый важный оксид — оксид водорода, вода — сделал возможной жизнь на Земле. Оксид серы SO₃ используют для получения серной кислоты, а также для обработки пищевых продуктов — так увеличивают срок хранения, например, фруктов.

Оксиды железа используют для получения красок, производства электродов, хотя больше всего оксидов железа восстанавливают до металлического железа в металлургии.

Оксид кальция, также известный как негашеная известь, применяют в строительстве. Оксиды цинка и титана имеют белый цвет и нерастворимы в воде, потому стали хорошим материалом для производства красок — белил.

Оксид кремния SiO_2 является основным компонентом стекла. Оксид хрома Cr_2O_3 применяют для производства цветных зелёных стекол и керамики, а за счёт высоких прочностных свойств — для полировки изделий (в виде пасты Γ OИ).

Оксид углерода CO_2 , который выделяют при дыхании все живые организмы, используется для пожаротушения, а также, в виде сухого льда, для охлаждения чего-либо.

Таблица 1.1 – Соответствие некоторых оксидов, кислоти гидроксидов металлов

Кислотный оксид	Кислота	
CO_2	H ₂ CO ₃	
SO_2	H_2SO_3	
SO_3	H_2SO_4	
SiO_2	H ₂ SiO ₃ или H ₄ SiO ₄	
P_2O_3	H_3PO_3	
P_2O_5	HPO ₃ или Н ₃ PO ₄	
N_2O_3	HNO ₂	
NO ₂ (смешанный оксид)	HNO ₂ и HNO ₃	
N_2O_5	HNO_3	
Cl ₂ O ₇	HClO ₄	
Основный оксид	Основание	
Li ₂ O	LiOH	
Na ₂ O	NaOH	
K ₂ O	КОН	
MgO	$Mg(OH)_2$	
CaO	Ca(OH) ₂	
BaO	Ba(OH) ₂	
FeO	Fe(OH) ₂	
CrO	Cr(OH) ₂	
Амфотерный оксид	Амфотерный гидроксид	
BeO	Be(OH) ₂	
ZnO	Zn(OH) ₂	

SnO	Sn(OH) ₂
PbO	Pb(OH) ₂
Al_2O_3	$Al(OH)_3$
Cr_2O_3	Cr(OH) ₃

1.2 Основания

Основания – сложные вещества, которые состоят из катиона металла Me^+ (или металлоподобного катиона, например, иона аммония NH_4^+) и гидроксид-аниона OH^- .

По растворимости в воде основания делят на **растворимые** (щелочи) и нерастворимые основания.

Также есть **неустойчивые основания**, которые самопроизвольно разлагаются.

Номенклатура оснований

Названия оснований образуются весьма просто — сначала идёт слово «гидроксид», а затем название металла, который входит в данное основание. Если металл имеет переменную валентность, это отражают в названии.

Например, $Fe(OH)_3 - \varepsilon u \partial p o \kappa c u \partial \varepsilon mene s a (III)$; указана степень окисления железа, т.к. она переменная. NaOH $-\varepsilon u \partial p o \kappa c u \partial \varepsilon h a m p u s$; степень окисления натрия не указана, т.к. она постоянная.

Существует также основание NH_4OH (гидроксид аммония), где гидроксогруппа связана не с металлом, а катионом аммония NH_4^+ .

Таблица 1.2 – Амфотерные гидроксиды

Амфотерный	Кислотный	Состав комплексного
гидроксид	остаток и его	иона при
(основная и	валентность	взаимодействии с
кислотная форма)		растворами щелочей
$Zn(OH)_2 / H_2ZnO_2$	ZnO ₂ (II)	$\left[\operatorname{Zn}(\operatorname{OH})_4\right]^{2-}$
Al(OH) ₃ / HAlO ₂	AlO ₂ (I)	$[Al(OH)_4]^-, [Al(OH)_6]^{3-}$
Be(OH) ₂ / H ₂ BeO ₂	BeO ₂ (II)	$[Be(OH)_4]^{2-}$

Sn(OH) ₂ / H ₂ SnO ₂	SnO ₂ (II)	$\left[\mathrm{Sn}(\mathrm{OH})_4\right]^{2-}$
Pb(OH) ₂ / H ₂ PbO ₂	PbO ₂ (II)	[Pb(OH) ₄] ²⁻
Fe(OH) ₃ / HFeO ₂	FeO ₂ (I)	[Fe(OH) ₄] ⁻ , [Fe(OH) ₆] ³⁻
Cr(OH) ₃ / HCrO ₂	$CrO_{2}\left(I\right)$	$[Cr(OH)_4]^-, [Cr(OH)_6]^{3-}$

Классификация оснований

Основания можно классифицировать по следующим признакам:

- 1. По растворимости основания делят на растворимые **щёлочи** (NaOH, KOH) и **нерастворимые основания** (Ca(OH)₂, Al(OH)₃).
- 2. По кислотности (количеству гидроксогрупп) основания делят на **однокислотные** (КОН, LiOH) и **многокислотные** (Mg(OH₂), Al(OH)₃).
- 3. По химическим свойствам их делят на **осно́вные** (Ca(OH)₂, NaOH) и **амфотерные**, то есть проявляющие как основные свойства, так и кислотные (Al(OH)₃, Zn(OH)₂).
- 4. По силе (по степени диссоциации) различают: а) **сильные** ($\alpha = 100$ %) все растворимые основания NaOH, LiOH, Ba(OH)₂, малорастворимый Сa(OH)₂. б) **слабые** ($\alpha < 100$ %) все нерастворимые основания Cu(OH)₂, Fe(OH)₃ и
- б) **слабые** ($\alpha < 100 \%$) все нерастворимые основания $Cu(OH)_2$, $Fe(OH)_3$ и растворимое NH_4OH .

Получение

1. Взаимодействие активного металла с водой:

$$2Na + 2H_2O \rightarrow 2NaOH + H_2$$

 $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$
 $Mg + 2H_2O Mg(OH)_2 + H_2$

2. Взаимодействие основных <u>оксидов</u> с водой (только для щелочных и щелочноземельных металлов):

$$Na_2O + H_2O \rightarrow 2NaOH$$
,
 $CaO + H_2O \rightarrow Ca(OH)_2$.

3. Промышленным способом получения щелочей является электролиз растворов солей:

$$2NaCI + 4H_2O 2NaOH + 2H_2 + CI_2$$

4. Взаимодействие растворимых солей со щелочами, причем для нерастворимых оснований это единственный способ получения:

$$Na_2SO_4 + Ba(OH)_2 \rightarrow 2NaOH + BaSO_4$$

 $MgSO_4 + 2NaOH \rightarrow Mg(OH)_2 + Na_2SO_4$

Физические свойства

Все основания являются твердыми веществами, имеющими различную

окраску. В воде нерастворимы, кроме щелочей.

Внимание! Щёлочи являются очень едкими веществами. При попадании на кожу растворы щелочей вызывают сильные долгозаживающие ожоги, при попадании в глаза могут вызвать слепоту. При работе с ними следует соблюдать технику безопасности и пользоваться индивидуальными средствами защиты.

Внешний вид оснований. Слева направо: гидроксид натрия, гидроксид кальция, метагидроксид железа

Химические свойства

Химические свойства оснований с точки зрения теории электролитической диссоциации обусловлены наличием в их растворах избытка свободных гидроксид – ионов ОН[—].

1. Изменение цвета индикаторов: фенолфталеин – малиновый лакмус – синий

метиловый оранжевый – желтый

Фенолфталеин придаёт раствору щёлочи малиновую окраску

2. Взаимодействие с <u>кислотами</u> с образованием соли и воды (реакция нейтрализации):

$$2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$$
,
pactbopumoe

$$Mg(OH)_2 + 2HCI \rightarrow MgCI_2 + 2H_2O.$$

3. Взаимодействие с кислотными оксидами:

$$2KOH + SO_3 \rightarrow K_2SO_4 + H_2O$$

- 4. Взаимодействие с амфотерными оксидами и гидроксидами:
- а) при плавлении:

$$2\text{NaOH} + \text{AI}_2\text{O}_3 \rightarrow 2\text{NaAIO}_2 + \text{H}_2\text{O},$$

 $\text{NaOH} + \text{AI}(\text{OH})_3 \rightarrow \text{NaAIO}_2 + 2\text{H}_2\text{O}.$

б) в растворе:

$$2\text{NaOH} + \text{AI}_2\text{O}_3 + 3\text{H}_2\text{O} \rightarrow 2\text{Na}[\text{AI}(\text{OH})_4],$$

 $\text{NaOH} + \text{AI}(\text{OH})_3 \rightarrow \text{Na}[\text{AI}(\text{OH})_4].$

5. Взаимодействие с некоторыми простыми веществами (амфотерными металлами, кремнием и другими):

$$2\text{NaOH} + \text{Zn} + 2\text{H}_2\text{O} \rightarrow \text{Na}_2[\text{Zn}(\text{OH})_4] + \text{H}_2$$

 $2\text{NaOH} + \text{Si} + \text{H}_2\text{O} \rightarrow \text{Na}_2\text{SiO}_3 + 2\text{H}_2$

6. Взаимодействие с растворимыми солями с образованием осадков:

$$2NaOH + CuSO_4 \rightarrow Cu(OH)_2 + Na_2SO_4,$$

$$Ba(OH)_2 + K_2SO_4 \rightarrow BaSO_4 + 2KOH$$
.

7. Малорастворимые и нерастворимые основания разлагаются при нагревании:

$$Ca(OH)_2 \rightarrow CaO + H_2O$$
,
 $Cu(OH)_2 \rightarrow CuO + H_2O$.

 Таблица
 1.3-Температуры разложения некоторых гидроксидов

 металлов

Гидроксид	t _{разл} , °C	Гидроксид	t _{разл} , °C	Гидроксид	$t_{\rm paзл}$, °С
LiOH	925	Cd(OH) ₂	130	Au(OH) ₃	150
Be(OH) ₂	130	Pb(OH) ₂	145	Al(OH) ₃	>300
Ca(OH) ₂	580	Fe(OH) ₂	150	Fe(OH) ₃	500
Sr(OH) ₂	535	Zn(OH) ₂	125	Bi(OH) ₃	100
Ba(OH) ₂	1000	Ni(OH) ₂	230	In(OH) ₃	150

1.3. Кислоты

Кислоты – сложные вещества, которые при взаимодействии с водой образуют в качестве катионов только ионы \mathbf{H}^+ (или $\mathbf{H}_3\mathbf{O}^+$).

Номенклатура

Названия кислот и их солей приведены в таблице 1.4.

Таблица 1.4 – Важнейшие кислоты и их соли

Кислота	Названиекислоты	Кислотный	Название солей
		остаток и его	
		валентность	
HF	Фтороводородная (плавиковая)	F (I)	Фториды
HC1	Хлороводородная (соляная)	Cl (I)	Хлориды
HBr	Бромоводородная	Br (I)	Бромиды
HI	Иодоводородная	I (I)	Иодиды
H_2S	Сероводородная	S (II)	Сульфиды
H_2CO_3	Угольная	CO_3 (II)	Карбонаты

H_2SO_3	Сернистая	SO ₃ (II)	Сульфиты
H_2SO_4	Серная	SO ₄ (II)	Сульфаты
H_2SiO_3	Метакремниевая (кремниевая)	SiO ₃ (II)	Метасиликаты (силикаты)
H ₄ SiO ₄	Ортокремниевая	SiO ₃ (IV)	Ортосиликаты
H_3PO_3	Фосфористая	PO ₃ (III)	Фосфиты
HPO_3	Метафосфорная	$PO_3(I)$	Метафосфаты
H ₃ PO ₄	Ортофосфорная (фосфорная)	PO ₄ (III)	Ортофосфаты (фосфаты)
HNO_2	Азотистая	$NO_{2}(I)$	Нитриты
HNO ₃	Азотная	$NO_3(I)$	Нитраты
HClO ₄	Хлорная	ClO ₄ (I)	Перхлораты

Физические свойства

Кислоты бывают газообразные, жидкие и твердые. Некоторые имеют запах и цвет. Кислоты отличаются различной растворимостью в воде.

Классификация

По растворимости в воде кислоты можно поделить на **растворимые** и **нерастворимые**. Некоторые кислоты самопроизвольно разлагаются.

Кислоты

Получение кислот

1. Взаимодействие кислотных оксидов с водой. При этом с водой реагируют при обычных условиях только те оксиды, которым соответствует кислородсодержащая растворимая кислота.

кислотный оксид + вода = кислота

Например, оксид серы (VI) реагирует с водой с образованием серной кислоты:

$$SO_3 + H_2O \rightarrow H_2SO_4$$

При этом оксид кремния (IV) с водой не реагирует:

$$SiO_2 + H_2O \neq$$

2. Взаимодействие **неметаллов с водородом.** Таким образом получают только **бескислородные** кислоты.

Неметалл + водород = бескислородная кислота

Например, хлор реагирует с водородом:

$$H_2^0 + Cl_2^0 \rightarrow 2H^+Cl^-$$

3. Электролиз растворов солей. Как правило, для получения кислот электролизу подвергают растворы солей, образованных кислотным остатком кислородсодержащих кислот. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например, электролиз раствора сульфата меди (II):

$$2CuSO_4 + 2H_2O \rightarrow 2Cu + 2H_2SO_4 + O_2$$

4. Кислоты образуются при взаимодействии других кислот с солями. При этом более сильная кислота вытесняет менее сильную.

Например: карбонат кальция CaCO₃ (нерастворимая соль угольной кислоты) может реагировать с более сильной серной кислотой.

$$CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_2$$

5. Кислоты можно получить **окислением** оксидов, других кислот и неметаллов в водном растворе кислородом или другими окислителями.

Например, концентрированная азотная кислота окисляет фосфор до фосфорной кислоты:

$$P + 5HNO_3 \rightarrow H_3PO_4 + 5NO_2 + H_2O$$

Химические свойства кислот

1. В водных растворах кислоты диссоциируют на катионы водорода H^+ и анионы кислотных остатков. При этом сильные кислоты диссоциируют почти полностью, а слабые кислоты диссоциируют частично.

Например, соляная кислота диссоциирует почти полностью:

$$HC1 \rightarrow H^{+} + C1^{-}$$

Если говорить точнее, происходит протолиз воды, и в растворе образуются ионы гидроксония:

$$HCl + H_2O \rightarrow H_3O^+ + Cl^-$$

Многоосновные кислоты диссоциируют ступенчато.

Например, сернистая кислота диссоциирует в две ступени:

$$H_2SO_3 \leftrightarrow H^+ + HSO_3^-$$

 $HSO_3^- \leftrightarrow H^+ + SO_3^{2-}$

- **2.** Кислоты изменяют окраску **индикатора.** Водный раствор кислот окрашивает **лакмус** в **красный** цвет, **метилоранж** в **красный** цвет. **Фенолф талеин** не изменяет окраску в присутствии кислот.
 - 3. Кислоты реагируют с основаниями и основными оксидами.

С **нерастворимыми основаниями** и соответствующими им **оксидами** взаимодействуют только растворимые кислоты.

нерастворимое основание + растворимая кислота = соль + вода основный оксид + растворимая кислота = соль + вода

Например, гидроксид меди (II) взаимодействует с растворимой бромоводородной кислотой:

$$Cu(OH)_2 + 2HBr \rightarrow CuBr_2 + 2H_2O$$

При этом гидроксид меди (II) не взаимодействует с нерастворимой кремниевой кислотой.

$$Cu(OH)_2 + H_2SiO_3 \neq$$

С **сильными основаниями** (щелочами) и соответствующими им **оксидами** реагируют любые кислотами.

Щёлочи взаимодействуют с любыми кислотами — и сильными, и слабыми. При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации. Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь $_{({\rm избыток})}$ + кислота = средняя соль + вода

щёлочь + многоосновная кислота $_{(избыток)} =$ кислая соль + вода

Например, гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

$$NaOH + H_3PO_4 \rightarrow NaH_2PO_4 + H_2O$$

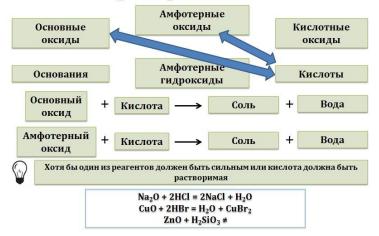
При мольном соотношении количества щелочи и кислоты 1:2 образуются гидрофосфаты:

$$2NaOH + H_3PO_4 \rightarrow Na_2HPO_4 + 2H_2O$$

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

$$3NaOH + H_3PO_4 \rightarrow Na_3PO_4 + 3H_2O$$

Кислота + основание/ амфотерный гидроксид



4. Растворимые кислоты взаимодействуют с амфотерными оксидами и гидроксидами.

Растворимая кислота + амфотерный оксид = соль + вода Растворимая кислота + амфотерный гидроксид = соль + вода **Например**, уксусная кислота взаимодействует с гидроксидом алюминия:

$$3CH_3COOH + Al(OH)_3 \rightarrow (CH_3COO)_3Al + 3H_2O$$

Кислота + основный/ амфотерный оксид

5. Некоторые кислоты являются сильными

восстановителями. Восстановителями являются кислоты, образованные неметаллами в минимальной или **промежуточной степени окисления**, которые могут повысить свою степень окисления (йодоводород HI, сернистая кислота H_2SO_3 и др.).

Например, йодоводород можно окислить хлоридом меди (II):

$$4HI^{-} + 2Cu^{+2} Cl_{2} \rightarrow 4HCl + 2Cu^{+}I + I_{2}^{0}$$

6. Кислоты взаимодействуют с солями.

Кислоты реагируют **с растворимыми солями** только при условии, что в продуктах реакции присутствует **газ, вода, осадок или другой слабый** электролит. Такие реакции протекают по механизму ионного обмена.

Кислота $_1$ + растворимая соль $_1$ = соль $_2$ + кислота $_2$ /оксид + вода

Кислота + соль

Например, соляная кислота взаимодействует с нитратом серебра в растворе:

$$Ag^+NO_3^- + H^+Cl^- \rightarrow Ag^+Cl^- \downarrow + H^+NO_3^-$$

Кислоты реагируют и с нерастворимыми солями. При этом более сильные кислоты вытесняют менее сильные кислоты из солей.

Например, карбонат кальция (соль угольной кислоты), реагирует с соляной кислотой (более сильной, чем угольная):

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$$

7. Кислоты взаимодействуют с кислыми и основными солями. При этом более сильные кислоты вытесняют менее сильные из кислых солей. Либо кислые соли реагируют с кислотами с образованием более кислых солей.

кислая $coль_1 + кислота_1 = средняя <math>coль_2 + кислота_2/оксид + вода$

Например, гидрокарбонат калия реагирует с соляной кислотой с образованием хлорида калия, углекислого газа и воды:

$$KHCO_3 + HCl \rightarrow KCl + CO_2 + H_2O$$

Ещё **пример**: гидрофосфат калия взаимодействует с фосфорной кислотой с образованием дигидрофосфата калия:

$$H_3PO_4 + K_2HPO_4 \rightarrow 2KH_2PO_4$$

При взаимодействии **основных солей** с кислотами образуются **средние соли.** Более сильные кислоты также вытесняют менее сильные из солей.

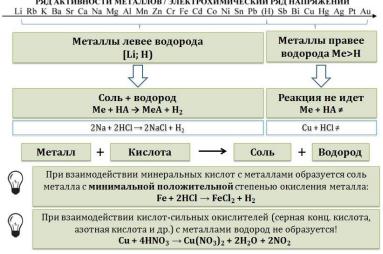
Например, гидроксокарбонат меди (II) растворяется в серной кислоте:

$$2H_2SO_4 + (CuOH)_2CO_3 \rightarrow 2CuSO_4 + 3H_2O + CO_2$$

Основные соли могут взаимодействовать с собственными кислотами. При этом вытеснения кислоты из соли не происходит, а просто образуются более средние соли.

Например, гидроксохлорид алюминия взаимодействует с соляной кислотой:

$$Al(OH)Cl_2 + HCl \rightarrow AlCl_3 + H_2O$$


8. Кислоты взаимодействуют с металлами.

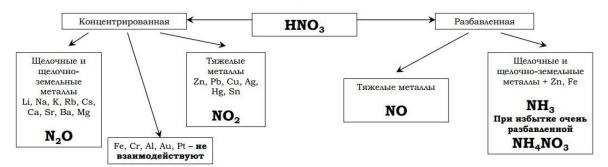
При этом протекает окислительно-восстановительная реакция. Однако минеральные кислоты и кислоты-окислители взаимодействуют по-разному.

К минеральным кислотам относятся соляная кислота HCl, разбавленная серная кислота H_2SO_4 , фосфорная кислота H_3PO_4 , плавиковая кислота HF, бромоводородная HBr и йодоводородная кислоты HI и др.

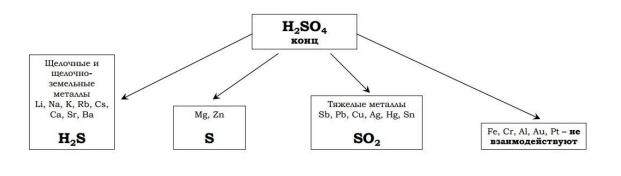
Такие кислоты взаимодействуют только с металлами, расположенными в ряду активности до водорода:

КИСЛОТА + МЕТАЛЛРЯД АКТИВНОСТИ МЕТАЛЛОВ / ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ В K Ba Sr Ca Na Mo Al Mn Zn Cr Fe Cd Co Ni Sn Ph (H) Sh Ri Cu Ho Ao I

При взаимодействии минеральных кислот с металлами образуются **соль и водород**:


минеральная кислота + металл = соль + $H_2 \uparrow$

Например, железо взаимодействует с соляной кислотой с образованием хлорида железа (II):


$$Fe + 2H^+Cl \rightarrow Fe^{+2}Cl_2 + H_2^0$$

Кислоты-окислители (азотная кислота HNO_3 любой концентрации и серная концентрированная кислота $H_2SO_{4(конц)}$) при взаимодействии с металлами **водород не образуют**, т.к. окислителем выступает не водород, а азот или сера. Продукты восстановления азотной или серной кислот бывают различными. Определять их лучше по специальным правилам.

Взаимодействие азотной кислоты с металлами

Взаимодействие концентрированной серной кислоты с металлами

9. Некоторые кислоты разлагаются при нагревании.

Угольная H_2CO_3 , сернистая H_2SO_3 и азотистая HNO_2 кислоты разлагаются самопроизвольно, без нагревания:

$$H_2CO_3 \rightarrow H_2O + CO_2$$

 $H_2SO_3 \rightarrow H_2O + SO_2$
 $2HNO_2 \rightarrow NO + H_2O + NO_2$


Кремниевая H_2SiO_3 , йодоводородная HI кислоты разлагаются при нагревании:

$$H_2SiO_3 \rightarrow H_2O + SiO_2$$

 $2HI \rightarrow H_2 + I_2$

Азотная кислота HNO₃ разлагается при нагревании или на свету:

$$4HNO_3 \rightarrow O_2 + 2H_2O + 4NO_2$$

Разложение кислот

1.4 Соли

Соли — это сложные вещества, состоящие из одного (нескольких) атомов металла (или более сложных катионных групп, например, аммонийных групп NH_4^+ , гидроксилированных групп $Me(OH)_n^{m+}$) и одного (нескольких) кислотных остатков. Общая формула солей Me_nA_m , где A — кислотный остаток. Соли (с точки зрения диссоциации) представляют собой электролиты, диссоциирующие в водных растворах на катионы металла (или более сложные катионы) и анионы кислотного остатка.

Классификация

По составу соли подразделяют на *средние* (*нормальные*), кислые (гидросоли), основные (гидроксосоли), двойные, смешанные и комплексные (см. таблицу 1.5)

Таблица 1.5 – Классификация солей по составу

Вид соли	Определение	Примеры
Средние	Продукт полного замещения атомов	AlCl ₃ Na ₂ SO ₄
(нормальные)	водорода в кислоте на атомы	
	одного и того же	
	металла	
Кислые	Продуктнеполногозамещения	KHSO ₄ NaHCO ₃
(гидросоли)	атомов водорода в кислоте на	
	металл	
Основные	Продукт неполного замещения ОН-	FeOHCl
(гидроксосоли)	группоснования на кислотный	MgOHBr
	остаток	
Двойные	Содержат атомы двух разных	KNaSO ₄
	металлов и один кислотный	LiNaCO ₃
	остаток	
Смешанные	Содержат атомы одного итого же	CaClBrMgFCl
	металла и несколько кислотных	
	остатков	
Комплексные	Комплекс – сложная частица,	[Cu(NH ₃) ₄]SO ₄
	состоящая из более простых частиц,	$K_2[Zn(OH)_4]$
	способных к самостоятельному	
	существованию	

Номенклатура

Названия средних солей составляют по следующей схеме: $FeCl_3 - xлорид$ железа(III); указана степень окисления железа, т.к. она переменная. $Na_2SO_4 - cyльфат$ натрия; степень окисления натрия не указана, т.к. она постоянная.

К названиям кислых солей добавляют приставку $\it гидро$ -. Если атомов водорода в кислотном остатке несколько, то их количество указывают умножающими приставками — $\it du$ - (два атома водорода), $\it mpu$ - (три атома водорода) и т.д., которые записывают перед приставкой $\it гидро$ -. Например, $\it KHSO_4$ — $\it гидросульфат$ калия, $\it KH_2PO_4$ — $\it durudpoфocфат$ калия.

К названиям основных солей добавляют приставку $\it гидроксо-$. Если ОН-групп в составе соли несколько, то их количество указывают умножающими приставками, которые записывают перед приставкой $\it гидроксо-$. Например, $FeOHCl_2 - \it гидроксохлорид железа(III)$, $Fe(OH)_2Cl \it durudpoкcoxлорид железа(III)$.

В названиях двойных солей металлы перечисляются по алфавиту через дефис. В названиях смешанных солей кислотные остатки перечисляются аналогично. Например, $KNaSO_4 - cyльфат$ калия-натрия, CaBrCl - бромид-хлорид кальция.

Некоторые соли имеют тривиальные названия. Например, кристаллогидрат сульфата магния MgSO $_4$ 7H $_2$ O называют еще *горькой солью*.

Физические свойства

Соли — это кристаллические вещества разных цветов и разной растворимости в воде.

Химические свойства

1. В водных растворах соли диссоциируют на катионы металлов Me⁺ и анионы кислотных остатков. При этом растворимые соли диссоциируют почти полностью, а нерастворимые соли практически не диссоциируют, либо диссоциируют только частично.

Например, хлорид кальция диссоциирует почти полностью:

$$CaCl_2 \rightarrow Ca^{2+} + 2Cl^{-}$$

Кислые и основные соли диссоциируют ступенчато. При диссоциации кислых солей сначала разрываются ионные связи металла с кислотными

остатком, затем диссоциирует кислотный остаток кислой соли на катионы водорода и анион кислотного остатка.

Например, гидрокарбонат натрия диссоциирует в две ступени:

$$NaHCO_3 \rightarrow Na^+ + HCO_3^-$$

 $HCO_3^- \rightarrow H^+ + CO_3^{2-}$

Основные соли также диссоциируют ступенчато.

Например, гидроксокарбонат меди (II) диссоциирует в две ступени:

$$(CuOH)_2CO_3 \rightarrow 2CuOH^+ + CO_3^{2-}$$

 $CuOH^+ \rightarrow Cu^{2+} + OH^-$

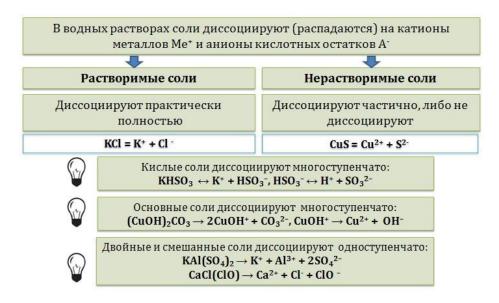
Двойные соли диссоциируют в одну ступень.

Например, сульфат алюминия-калия диссоциирует в одну ступень:

$$KAl(SO_4)_2 \rightarrow K^+ + Al^{3+} + 2SO_4^{2-}$$

Смешанные соли диссоциируют также одноступенчато.

Например, хлорид-гипохлорит кальция диссоциирует в одну ступень:


$$CaCl(OCl) \rightarrow Ca^{2+} + Cl^{-} + ClO^{-}$$

Комплексные соли диссоциируют на комплексный ион и ионы внешней сферы.

Например, тетрагидроксоалюминат калия распадается на ионы калия и тетрагидроксоалюминат-ион:

$$K[Al(OH)_4] \rightarrow K^+ + [Al(OH)_4]^-$$

Диссоциация солей

2. Соли взаимодействуют с кислотными и амфотерными оксидами. При этом менее летучие оксиды вытесняют более летучие при сплавлении.

соль $_1$ + амфотерный оксид = соль $_2$ + кислотный оксид соль $_1$ + твердый кислотный оксид = соль $_2$ + кислотный оксид соль + основный оксид \neq

Например, карбонат калия взаимодействует с оксидом кремния (IV) с образованием силиката калия и углекислого газа:

$$K_2CO_3 + SiO_2 \rightarrow K_2SiO_3 + CO_2\uparrow$$

Карбонат калия также взаимодействует с оксидом алюминия с образованием алюмината калия и углекислого газа:

$$K_2CO_3 + Al_2O_3 \rightarrow 2KAlO_2 + CO_2\uparrow$$

- 3. Соли взаимодействуют с кислотами.
- **4.** Растворимые соли взаимодействуют с **щелочами.** Реакция возможна, только если образуется газ, осадок, вода или слабый электролит, поэтому с щелочами взаимодействуют, как правило, соли тяжелых металлов или соли аммония.

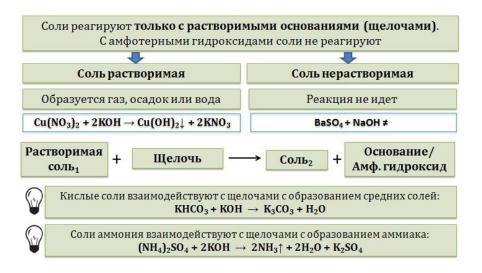
Растворимая соль + щелочь = соль2 + основание

Например, сульфат меди (II) взаимодействует с гидроксидом калия, т.к. образуется осадок гидроксида меди (II):

$$CuSO_4 + 2KOH \rightarrow Cu(OH)_2 + K_2SO_4$$

Хлорид аммония взаимодействует с гидроксидом натрия:

$$(NH_4)_2SO_4 + 2KOH \rightarrow 2NH_3\uparrow + 2H_2O + K_2SO_4$$


Кислые соли взаимодействуют с щелочами с образованием средних солей.

Кислая соль + щелочь = средняя соль + вода

Например, гидрокарбонат калия взаимодействует с гидроксидом калия:

$$KHCO_3 + KOH \rightarrow K_2CO_3 + H_2O$$

Соль + основание

5. Растворимые соли взаимодействуют с **солями.** Реакция возможна, только если обе соли растворимые, и в результате реакции образуется осадок.

Растворимая соль $_1$ + растворимая соль $_2$ = соль $_3$ + соль $_4$

Растворимая соль + нерастворимая соль ≠

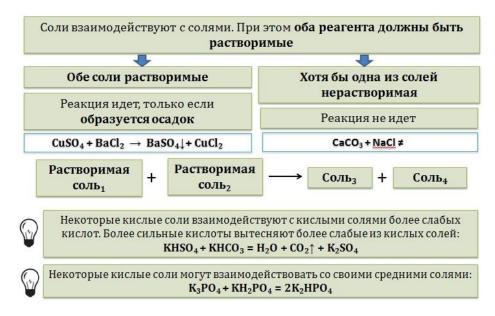
Например, сульфат меди (II) взаимодействует с хлоридом бария, т.к. образуется осадок сульфата бария:

$$CuSO_4 + BaCl_2 \rightarrow BaSO_4 \downarrow + CuCl_2$$

Некоторые кислые соли взаимодействуют с кислыми солями более слабых кислот. При этом более сильные кислоты вытесняют более слабые:

Кислая $coль_1 + кислая <math>coль_2 = coль_3 + кислота$

Например, гидрокарбонат калия взаимодействует с гидросульфатом калия:


$$KHSO_4 + KHCO_3 = H_2O + CO_2 \uparrow + K_2SO_4$$

Некоторые кислые соли могут реагировать со своими средними солями.

Например, фосфат калия взаимодействует с дигидрофосфатом калия с образованием гидрофосфата калия:

$$K_3PO_4 + KH_2PO_4 = 2K_2HPO_4$$

Соль + соль

6. Соли взаимодействуют с металлами. Более активные металлы (расположенные левее в ряду активности металлов) вытесняют из солей менее активные.

Например, железо вытесняет медь из раствора сульфата меди (II):

$$CuSO_4 + Fe = FeSO_4 + Cu$$

А вот серебро вытеснить медь не сможет:

$$CuSO_4 + Ag \neq$$

$$Cоль_1 + металл_1 = соль_2 + металл_2$$

Обратите внимание! Если реакция протекает в растворе, то добавляемый металл не должен реагировать с водой в растворе. Если мы добавляем в раствор соли щелочной или щелочноземельный металл, то этот металл будет реагировать преимущественно с водой, а с солью будет реагировать незначительно.

Например, при добавлении натрия в раствор хлорида цинка натрий будет взаимодействовать с водой:

$$2H_2O + 2Na = 2NaOH + H_2$$

Образующийся гидроксид натрия, конечно, будет реагировать с хлоридом цинка:

$$ZnCl_2 + 2NaOH = 2NaCl + Zn(OH)_2$$

Но сам-то натрий с хлоридом цинка, таким образом, взаимодействовать напрямую не будет!

$$ZnCl_{2(p-p)} + Na \neq$$

А вот в расплаве эта реакция при определенных условиях уже может протекать, так как в расплаве никакой воды нет.

$$ZnCl_{2(p-B)} + 2Na = 2NaCl + Zn$$

И еще один нюанс. Чтобы получить расплав, соль необходимо нагреть. Но многие соли при нагревании разлагаются. И реагировать с металлом, естественно, при этом не могут. Таким образом, реагировать с металлами в расплаве могут только те соли, которые не разлагаются при нагревании. А разлагаются при нагревании почти все нитраты, нерастворимые карбонаты и некоторые другие соли.

Например, нитрат меди (II) в расплаве не реагирует с железом, так как при нагревании нитрат меди разлагается:

$$2Cu(NO_3)_2 = 2CuO + 4NO_2 + O_2$$

Образующийся оксид меди, конечно, будет реагировать с железом:

$$CuO + Fe = FeO + Cu$$

Но сам-то нитрат меди, получается, с железом реагировать напрямую не будет!

$$Cu(NO_3)_{2, (pасплав)} + Fe \neq$$

При добавлении **меди** (Cu) в раствор соли менее активного металла – **серебра** (AgNO₃) произойдет химическая реакция:

$$2AgNO_3 + Cu = Cu(NO_3)_2 + 2Ag$$

 $2Cu(NO_3)_2 = 2CuO + 4NO_2 + O_2$

При добавлении **железа** (Fe) в раствор соли **меди** (CuSO₄) на железном гвозде появился розовый налет металлической меди:

$$CuSO_4 + Fe = FeSO_4 + Cu$$

При добавлении **цинка** в раствор **нитрата свинца** (II) на цинке образуется слой металлического свинца:

$$Pb(NO_3)_2 + Zn = Pb + Zn (NO_3)_2$$

7. Некоторые соли при нагревании разлагаются.

Соли, в составе которых есть сильные окислители, разлагаются с окислительно-восстановительной реакцией. К таким солям относятся:

• Нитрат, дихромат, нитрит аммония:

$$NH_4NO_3 \rightarrow N_2O + 2H_2O$$

 $NH_4NO_2 \rightarrow N_2 + 2H_2O$
 $(NH_4)_2Cr_2O_7 \rightarrow N_2 + 4H_2O + Cr_2O_3$

• Все нитраты:

$$2AgNO_3 \rightarrow 2Ag + 2NO_2 + O_2$$

• Галогениды серебра (кроме AgF):

$$2AgCl \rightarrow 2Ag + Cl_2$$

Некоторые соли разлагаются без изменения степени окисления элементов. К ним относятся:

• Карбонаты и гидрокарбонаты:

$$MgCO_3 \rightarrow MgO + CO_2$$

 $2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$


• Карбонат, сульфат, сульфит, сульфид, хлорид, фосфат аммония:

$$NH_4Cl \rightarrow NH_3 + HCl$$

$$(NH_4)_2CO_3 \rightarrow 2NH_3 + CO_2 + H_2O$$

$$(NH_4)_2SO_4 \rightarrow NH_4HSO_4 + NH_3$$

Разложение солей

7. Соли проявляют восстановительные свойства. Как правило, восстановительные свойства проявляют либо соли, содержащие неметаллы с низшей степенью окисления, либо соли, содержащие неметаллы или металлы с промежуточной степенью окисления.

Например, йодид калия окисляется хлоридом меди (II):

$$4\text{KI}^- + 2\text{Cu}^{+2}\text{Cl}2 \rightarrow 4\text{KCl} + 2\text{Cu}^+\text{l} + \text{I}_2^{\ 0}$$

Восстановительные свойства

8. Соли проявляют и **окислительные свойства**. Как правило, окислительные свойства проявляют соли, содержащие атомы металлов или неметаллов с высшей или промежуточной степенью окисления.

2. ЛАБОРАТОРНЫЙ ПРАКТИКУМ

2.1 Практическая работа №1

Решение экспериментальных задач по теме: «Основные классы неорганических соединений»

(8 класс)

Инструкция к выполнению практической работы Решение экспериментальных задач по теме: «Основные классы неорганических соединений»

В этой работе Вы проверите свои знания о химических свойствах основных классах неорганических соединений, их взаимопревращениях.

Вы должны решить не менее трех экспериментальных задач.

Прежде чем приступить к решению, подумайте над задачей, мысленно составьте ход ее решения и план своих действий, а также продумайте, какие реактивы Вам необходимы. Проверьте, все ли имеется на Вашем столе.

В своем отчете о решении задач укажите взятые для реакций вещества, условия реакций (нагревание, растворимость продуктов и т.д.), уравнения реакций, цвет и названия продуктов, тип реакций.

Например:
$$FeCI_2$$
 + 2 NaOH = $Fe(OH)_2$ + 2 NaCI серо-зелен. гидроксид железа(II)

Не забудьте после проведения опытов слить полученные растворы в колбы, указанные учителем, и привести в порядок рабочее место.

Пожалуйста, соблюдайте правила ТБ.

Желаю Вам успешного выполнения работы.

Цель работы: обобщить и систематизировать знания об основных классах неорганических соединений.

Оборудование: спиртовка, держатель, спички, стаканчик для мусора, штатив, пробирки.

Реактивы: медь, карбонат меди (II), сульфат меди (II), соляная кислота, цинк, серная кислота, гидроксид калия, гидроксид натрия, железный гвоздь (ржавый), фенолфталеин, гидроксид кальция, сульфат цинка, лакмус.

Ход работы:

Задача № 1.

- Окислить медь, к полученному оксиду меди (II), прилить соляную кислоту, нагреть.
- Нагреть карбонат меди (II), к полученному оксиду меди (II) прилить соляную кислоту, нагреть.
 - К карбонату меди (II) прилить соляную кислоту.
- К сульфату меди (II) прилить щелочь, а затем к полученному гидроксиду меди (II) прилить соляную кислоту.

Задача № 2.

Для доказательства наличия оксида меди (II) прилить кислоту (серную или соляную), нагреть.

Если раствор окрасится в голубой или зеленый цвет, значит, в выданной смеси есть оксид меди (II).

Задача № 3.

Для того, чтобы очисть железный гвоздь от ржавчины, нужно прилить соляную или серную кислоту, нагреть.

Задача № 4.

Получить медь можно из раствора сульфата меди (II), если в раствор опустить железный гвоздь (очищенный от ржавчины) или цинк.

Задача № 5.

Для доказательства основного характера гидроксида кальция прилить фенолфталеин, а затем соляную кислоту.

Оформление работы

Задача № 1

• 2 Cu +
$$O_2$$
 = 2 CuO р.соединения (при нагревании) оксид меди(II) черного цвета

$$CuO + 2HCI = CuCI_2 + H_2O$$
 р.обмена (при нагревании)
 _{хлорид меди(II)}

•
$$CuCO_3 = CuO + CO_2$$
 р.разложения оксид оксид меди(II) углерода(IV)

$$CuO + 2HCI = CuCI_2 + H_2O$$
 р.обмена (при нагревании)

•
$$CuCO_3 + 2HCI = CuCI_2 + H_2CO_3$$

$$H_2O + CO_2$$

•
$$CuSO_4 + 2NaOH = Cu(OH)_2 + Na_2SO_4$$
 р.обмена гидроксид сульфат натрия

Задача № 2

В смеси есть оксид меди (II), т.к. при растворении черного порошка в серной или соляной кислоте (при нагревании) образовался раствор голубого (или зеленого) цвета:

$$CuO + H_2SO_4 = CuSO_4 + H_2O$$
 р. обмена сульфат меди(II)

$$CuO + 2HCI = CuCI_2 + H_2O$$
 р.обмена хлорид меди(II)

Задача № 3

Задача № 4.

$$CuSO_4$$
 + Fe = $Cu\downarrow$ + FeSO₄ р.замещения красного сульфат цвета железа(II)

Задача № 5

Гидроксид кальция имеет основной характер, т.к. при взаимодействии с фенолфталеином раствор окрасился в малиновый цвет.

При добавлении к раствору кислоты, раствор обесцветился.

 $Ca(OH)_2$ + 2HCI = $CaCI_2$ + 2H $_2O$ р.нейтрализация

Составить вывод.

2.2 Типовые задачи по теме: «Основные классы неорганических соединений»

Тест состоит из 3-х частей.

Первая часть 1-10 задания. Необходимо выбрать только один правильный ответ.

Вторая часть 11-12 задания. Необходимо установить соответствие:

- между названиями оксидов и классом;
- между формулой вещества и его принадлежностью к определенному классу (группе), неорганических соединений;

Третья часть 13-14 задания. Необходимо написать уравнения реакций:

- уравнения реакций, в результате которых можно осуществить превращения:
- молекулярные уравнения возможных реакций между попарно реагируемых веществ, формулы которых приведены ниже.

Вариант №1.

1. Только простые вещества расположены в ряду

- A) P_2O_5 , Al, Na_2SO_3 , $Ca(OH)_2$
- Б) Cu H₂, P, Hg
- B) Si, SO_3 , Mg, $Ba(NO_3)_2$
- Γ) Mn₂O₇, ZnCl₂, Ba(OH)₂, H₃PO₄

2. Кислоты – это

- А) сложные вещества, состоящие из двух элементов, один из которых кислород;
- Б) сложные вещества, в которых атомы металлов соединены с одной или несколькими гидроксильными группами;
- В) сложные вещества, которые состоят из атомов металла и кислотных остатков;
 - Г) сложные вещества, состоящие из атомов водорода и кислотного остатка.
 - 3. Одноосновной кислородсодержащей кислотой является
 - A) H_3PO_4 B) H_2S C) HC1
 - 4. Кислоту можно получить
 - А) при взаимодействии основного оксида с водой;
 - Б) при взаимодействии металла с неметаллом;
 - В) при взаимодействии соли с кислотой;
 - Г) при взаимодействии основного оксида с кислотным оксидом.

5. Все основания взаимодействуют с

- А) металлами и неметаллами;
- Б) кислотными оксидами и кислотами;
- В) основными оксидами и кислотами;
- Г) неметаллами и солями.

6. Щелочи - это

- А) растворимые в воде основания;
- Б) вещества, проявляющие свойства слабых кислот и слабых оснований;
- В) нерастворимые в воде основания;
- Γ) сложные вещества, состоящие из двух элементов, один из которых кислород.

7. Основания вступают в реакции с

- А) металлами и кислотными оксидами;
- Б) кислотами и солями;
- В) кислотными и основными оксидами;

Г) кислотами и неметаллами.

8. Соль нельзя получить при взаимодействии

- А) металла и неметалла;
- Б) кислоты и основания;
- В) основного и кислотного оксидов;
- Г) основного оксида и основания.

9. Солеобразующие оксиды классифицируют на

- А) основные и кислотные;
- Б) основные, кислотные и безразличные;
- В) основные, кислотные и амфотерные;
- Г) основные и амфотерные.

10. Оксиды образуются при разложении

- А) слабых кислот и слабых оснований;
- Б) некоторых сильных кислот;
- В) бескислородных кислот;
- Г) щелочей.

11. Установите соответствие между названиями оксидов и классом (группой), к которому(-ой) они принадлежат.

КЛАСС (ГРУППА):
1) основный
2) кислотный
3) амфотерный
4) несолеобразующий (безразличный)
5) кислый
6) щелочной

ответ

\boldsymbol{A}	Б	В	Γ

12. Установите соответствие между формулой вещества и его принадлежностью к определенному классу (группе), неорганических соединений.

СС (ГРУППА):
1;
ние;
оный гидроксид;
н соль;
соль;
ая соль.

ответ

A	Б	В	Γ

13. Напишите уравнения реакций, в результате которых можно осуществить превращения:

$$S \rightarrow SO_2 \rightarrow SO_3 \rightarrow (MgOH)_2SO_4 \rightarrow MgSO_4 \rightarrow Mg(OH)_2$$

14. Напишите молекулярные уравнения возможных реакций между попарно реагируемых веществ, формулы которых:

Вариант №2.

1. К сложным веществам относятся

- А) металлы и оксиды;
- Б) кислоты и основания;
- В) металлы и неметаллы;
- Г) соли и неметаллы.

2. Основания – это

А) сложные вещества, состоящие из атомов водорода и кислотного остатка;

- Б) сложные вещества, состоящие из двух элементов, один из которых кислород;
- В) сложные вещества, которые состоят из атомов металла и кислотных остатков;
- Г) сложные вещества, в которых атомы металлов соединены с одной или несколькими гидроксильными группами.

3. Двухосновной кислородсодержащей кислотой является

- A) H_3PO_4 B) H_2SO_3 C) HC1
- 4. Кислоту можно получить
- А) при взаимодействии кислотного оксида с водой;
- Б) при взаимодействии металла с неметаллом;
- В) при взаимодействии соли с щелочью;
- Г) при взаимодействии основного оксида с кислотным оксидом.

5. Все кислоты взаимодействуют с

- А) металлами и неметаллами;
- Б) кислотными оксидами и основаниями;
- В) основными оксидами и основаниями;
- Г) неметаллами и солями.

6. Амфотерные гидроксиды - это

- А) нерастворимые в воде основания;
- Б) вещества, проявляющие свойства слабых кислот и слабых оснований;
- В) растворимые в воде основания;
- Γ) сложные вещества, состоящие из двух элементов, один из которых кислород.

7. Основания вступают в реакции с

- А) кислотами и солями;
- Б) металлами и кислотными оксидами;
- В) кислотными и основными оксидами;
- Г) кислотами и неметаллами.

8. Соль нельзя получить при взаимодействии

- А) кислоты и основания;
- Б) кислотного оксида и воды;
- В) основного и кислотного оксидов;
- Γ) металла и неметалла.

9. Основные оксиды - это оксиды

- А) металлов в степени окисления +1 и +2;
- Б) металлов в степени окисления +3;
- В) неметаллов;
- Γ) неметаллов и металлов в степени окисления больше +4.

10. Оксиды образуются при взаимодействии

- А) металла и неметалла;
- Б) основного оксида и кислоты;
- В) кислоты и основания;
- Г) простого вещества и кислорода.

11. Установите соответствие между названиями оксидов и классом (группой), к которому(-ой) они принадлежат.

НАЗВАНИЕ ОКСИДОВ:	КЛАСС (ГРУППА):
А) оксид бериллия	1) основный
Б) оксид меди (II)	2) кислотный
В) оксид хрома (VI)	3) амфотерный
Г) оксид серы (IV)	4) несолеобразующий (безразличный)
	5) кислый
	6) щелочной

ответ

А Б		В	Γ	

12. Установите соответствие между формулой вещества и его принадлежностью к определенному классу (группе), неорганических соединений.

ХИМИЧЕСКАЯ ФОРМУЛА:	КЛАСС (ГРУППА):
A) H_2S	1) кислота;
Б) NaHCO ₃	2) основание;
B) NH ₄ CI	3)амфотерный гидроксид;
Γ) Ca(OH) ₂	4) средняя соль;
	5) кислая соль;
	6) основная соль.

ответ

A	Б	В	$oldsymbol{\Gamma}$

13. Напишите уравнения реакций, в результате которых можно осуществить превращения:

$$Zn \rightarrow ZnO \rightarrow ZnSO_4 \rightarrow Zn(HSO_4)_2 \rightarrow Zn(OH)_2 \rightarrow ZnCl_2$$

14. Напишите молекулярные уравнения возможных реакций между попарно реагируемых веществ, формулы которых:

Ответы:

	1вариант	2 вариант
1	Б	Б
2	Γ	Γ
3	Б	В
4	B A	
5	Б	В
6	A	Б
7	Б	A
8	Γ	Б
9	В	A

10	A	Γ
11	1432	3122
12	1346	1542

	Задание 13	Задание 14			
1	$S \rightarrow SO_2 \rightarrow SO_3 \rightarrow (MgOH)_2SO_4 \rightarrow$	Zn(OH) ₂ , Fe, KOH, HI,			
вариант	$MgSO_4 \rightarrow Mg(OH)_2$	PbCl ₂			
2	$Zn \rightarrow ZnO \rightarrow ZnSO_4 \rightarrow Zn(HSO_4)_2$	Al(OH) ₃ , Sn(NO ₃) ₂ , HBr, Co,			
вариант	\rightarrow Zn(OH) ₂ \rightarrow ZnCl ₂	RbOH			

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Габриелян О.С., Остроумов И.Г. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования. М., 2016.
- 2. Ерохин Ю.М. Сборник тестовых заданий по химии: учеб. пособие для студ. учреждений сред. проф. образования. М., 2014.
- 3. Габриелян О.С., Лысова Г.Г. Химия: книга для преподавателя: учеб.-метод. пособие. М., 2012.
- 4. Глинка Н.Л. Задачи и упражнения по общей химии: учеб.-практ. пособие / Н.Л. Глинка; под ред. В.А. Попкова, А.В. Бабкова. 14-е изд. М.: Юрайт, 2017. 236 с.
- 5. Глинка Н.Л. Общая химия / Н.Л. Глинка. М.: Юрайт, 2013. 914 c.

ПРИЛОЖЕНИЕ №1

Таблица А1 – Периодическая система химических элементов Д.И. Менделеева

то	н		-		груп	пы э.	леме	н т о в		
Период	Ряд	I	II	III	IV	V	VI	VII		VIII
I	1	(H)						H 1,00797	Не 2 4,0026	Обозначение Атомны элемента номер
II	2	Li 3 _{6,939}	Ве 4 9,0122 Бериллий	B 5 10,811	С 6 12.01115 Углерод	N 7 14,0067	O 8 15,9994 Кислород	F 9 18,9984	Ne 10 20,179	Li 3 6,939
III	3	Na 11 Натрий	Mg 12 _{24,305} Магний	Al 13 26,9815 Алюминий	Si 14 _{28,086} Кремний	P 30,9738 Фосфор	S 16 32,064 Cepa	Cl 17 Хлор 35,453	Аг 18 Аргон 39,948	Относительн атомная масс
IV	4	К 19 39,102	Са 20 40,08	21 Sc 44,956 Скандий	22 47,90 Ті Титан	23 V 50,942 Ванадий	24 51,996 Cr Xpom	25 54,9380 Мп Марганец	²⁶ Fe ^{55,847} Железо	27 58,9330 Co Кобальт 28 58,71 N Никел
IV	5	²⁹ Cu медь	30 Zn 65,37 Цинк	Ga 31 69,72	Ge 32 _{72,59} Германий	As 33 Мышьяк	Se 34 78,96	Br 35 Бром 79,904	Кг 36 83,80 Криптон	
v	6	Rb 37 Рубидий 85,47	Sr 38 87,62 Стронций	39 88,905 Иттрий	40 Zr 91,22 Ц ирконий	41 Nb 92,906 Ниобий	42 Мо 95,94 Молибден	⁴³ Тс [99] Технеций	44 Ru 101,07 P утений	45 Rh 102,905 Rh Родий Паллади
	7	47 107,868 Ag Серебро	48 Cd 112.40 Кадмий	In 49 Индий 114,82	Sn 50 Олово 118,69	Sb 51 121,75 Сурьма	Те 52 127,60	I 53 Иод 126,9044	Хе 54 Ксенон	
VI	8	Cs 55 Цезий 132,905	Ва 56 Барий 137,34	57 La* 138,91 Лантан	72 178,49 Гафний	73 Та 180,948 Тантал	74 W 183,85 Вольфрам	75 186,2 Re Рений	76 190,2 О ѕ Осмий	77 Ir 78 P 192,2 Иридий Ллатин
VI	9	79 196,967 Au Золото	80 200,59 Нg Ртуть	Т1 81 204,37	Рb 82 Свинец	Ві 83 Висмут	Ро 84 Полоний	Аt 85 [210]	Rn 86 [222]	
VII	10	Fr 87 [223] Франций	Ra 88 [226] Радий	89 Ас** [227] Актиний	104 Rf [261] Резерфордий	105 [262] Db Дубний	106 Sg [263] Sg Сиборгий	107 [262] Вh Борий	108 [265] Нs Хассий	109 Мt [266] Мейтнерий
Ланта ноиды* 28	Се _{0.12} Се Церий	59 Pr 140,907 Празеодим	Nd 61 4,24 Неодим Пром	Рт 62 Sn 150,35 Самари	1 63 Eu 6. 151,96 Eu 1 I	4 Gd 65 57,25 °адолиний	ТЬ 66 Г 162,50 Диспроз	у 67 Но 164,930 Гольмий	68 Ег 167,26 Эрбий 69	Tm 70 Yb 71 L 173,04 Иттербий Лютец
Акти ** 90 23	Th ^{2,038} Торий	91 Ра 92 [231] Протактиний	U 93 _[237] Уран Непт	Np 94 Pt гуний Плутони	95 Am 9 [243] й Америций	6 Ст 97 247] Кюрий Бе	Bk 98 (252]* Калифорн	Сf 99 Es [254] Жинштейний	100 Fm 101 [257] Фермий Мен	Md 102 No 103 I [256] пелевий Нобелий Лоуренс

Таблица А2 – Таблица растворимости кислот, солей и оснований в воде и ЭХРНМ

	РАСТВОРИМОСТЬ КИСЛОТ, СОЛЕЙ И ОСНОВАНИЙ В ВОДЕ																			
	H⁺	Li*	K⁺	Na⁺	NH ₄ ⁺	Ba ²⁺	Ca ²⁺	Mg ²⁺	Sr ²⁺	Al ³⁺	Cr ³⁺	Fe ²⁺	Fe³+	Mn ²⁺	Zn ²⁺	Ag⁺	Hg ²⁺	Pb ²⁺	Sn ²⁺	Cu ²⁺
OH-		P	P	P	P	P	M	Н	M	Н	Н	Н	Н	Н	Н	-	-	Н	Н	Н
F-	P	M	P	P	P	M	Н	Н	Н	M	Н	Н	Н	P	P	P	-	Н	P	P
CI-	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	Н	P	M	P	P
Br	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	Н	M	M	P	P
1-	P	P	P	P	P	P	P	P	P	P	?	P	?	P	P	Н	Н	Н	M	?
S ²⁻	P	P	P	P	P	I	-	_	Н	_	Ī	Н	_	Н	H	Н	Н	Н	Н	Н
HS-	P	P	P	P	P	P	P	P	P	?	?	?	?	?	?	?	?	?	?	?
SO ₃ ²⁻	P	P	P	P	P	Н	H	M	H	?	Ī	H	?	?	M	H	Н	H	?	?
HSO₃ ⁻	P	?	P	P	P	P	P	P	P	?	?	?	?	?	?	?	?	?	?	?
SO ₄ ²⁻	P	P	P	P	P	Н	M	P	Н	P	P	P	P	P	P	M	_	Н	P	P
HSO₄⁻	P	P	P	P	P	?	?	?	-	?	?	?	?	?	?	?	?	Н	?	?
NO ₃ -	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	_	P
NO ₂ -	P	P	P	P	P	P	P	P	P	?	?	?	?	?	?	M	?	?	?	?
PO ₄ ³⁻	P	Н	P	P	_	Н	H	Н	Н	Н	Н	H	Н	Н	H	Н	Н	Н	Н	Н
HPO ₄ ²⁻	P	?	P	P	P	Н	H	M	Н	?	?	Н	?	Н	?	?	?	M	Н	?
H ₂ PO ₄ ⁻	P	P	P	P	P	P	P	P	P	?	?	P	?	P	P	P	?	_	?	?
CO ₃ ²⁻	P	P	P	P	P	H	H	Н	Н	?	?	H	_	Н	H	Н	Н	Н	?	Н
HCO₃ ⁻	P	P	P	P	P	P	P	P	P	?	?	P	?	?	?	?	?	P	?	?
CH₃COO⁻	P	P	P	P	P	P	P	P	P	_	P	P	_	P	P	P	P	P	1000	P
SiO ₃ ²⁻	H	Н	P	P	?	Н	H	Н	H	?	?	H	?	Н	H	?	?	H	?	?
MnO ₄ -	P	P	P	P	P	P	P	P	P	P	?	?	?	?	P	?	?	?	?	?
Cr ₂ O ₇ ²⁻	P	P	P	P	P	M	P	?	Н	?	?	?	P	?	?	Н	Н	M	?	P
CrO ₄ ²⁻	P	P	P	P	P	Н	P	P	Н	?	?	?	Н	Н	Н	Н	Н	Н	Н	Н
CIO ₃ -	P	P	P	P	P	P	P	P	P	P	P	?	?	P	P	P	P	P	?	P
CIO ₄ -	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	?	P

[«]Р» – растворяется (> 1 г на 100 г H_2O);

РЯД АКТИВНОСТИ МЕТАЛЛОВ / ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ

Li Rb K Ba Sr Ca Na Mg Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H2) Sb Bi Cu Hg Ag Pt Au активность металлов уменьшается

[«]М» – мало растворяется (от 0,1 г до 1 г на 100 г H_2O)

[«]Н» – не растворяется (меньше 0,01 г на 1000 г воды);

^{«-» -} в водной среде разлагается

^{«?» –} нет достоверных сведений о существовании соединений

Таблица АЗ – Взаимодействие между классами неорганических соединений

Реагент	Основный оксид	Амфотерный оксид	Кислотный оксид	Щелочь	Амфотерный гидроксид	Кислота	Com	H ₂ O
Основный оксид	2	соль	соль	-	соль + H ₂ O	соль + H ₂ O	-	щелочь
Амфотерный оксид	соль	9	соль	соль + H ₂ O	1	соль + H ₂ O	-	(2)
Ки слотный оксид	соль	соль	<u>12</u>	соль + H ₂ O	соль + H ₂ O	-	12	кислота
Щелочь	*	соль + H ₂ O	соль + H ₂ O	(4 8)	соль + H ₂ O	соль + H ₂ O	соль + основа- ние	ди ссоци- ация
Амфотерный гидроксид	соль + H ₂ O	9	соль + H ₂ O	соль + H ₂ O	ā	соль + H ₂ O	(3)	(3)
Кислота	соль + H ₂ O	соль + H ₂ O	12	соль + H ₂ O	соль + H ₂ O	-	соль + кислота	ди ссоци- ация
Соль	*	4	· ·	соль + основа- ние	9	соль + кислота	соль + соль	гидролиз

Таблица А4 - Химическая посуда и оборудование

А4.1 Стеклянная посуда

Стеклянную химическую посуду изготавливают из специального термостойкого огнеупорного стекла.

Название	Характеристика	Изображение
Пробирки в штативе	Пробирки простые и калиброванные (с делениями, указывающими объём) используют для проведения простейших опытов с небольшим количеством реактивов. Объём реактива в пробирке не должен превышать половины её объёма. Для хранения пробирок используют деревянные или пластмассовые стойки-штативы с круглыми отверстиями.	
Лабораторный стакан	Лабораторные стаканы предназначены для выполнения самых разнообразных процедур. Стаканы бывают различных размеров, с носиком и без носика, простые и калиброванные.	500 300 300 300 300 70 300 70 300 30

Колба	Колбы, используемые в лаборатории, как и химические стаканы, бывают различного размера, формы и назначения (круглые, конические, плоскодонные, круглодонные) В лабораторной практике широко применяют конические плоскодонные колбы (колбы Эрленмейера). Колба Вюрца представляет собой круглодонную колбу с отводной трубкой под углом. Её используют для получения газов и для отгонки	
	жидкостей при атмосферном давлении.	
Воронка химическая	Воронки химические служат для переливания жидкостей и фильтрования; капельные воронки используют для введения в реакционную среду жидких реактивов небольшими порциями.	

Воронка делительная	Воронки делительные применяют для разделения несмешивающихся жидкостей (например, воды и масла).	
Капельница	Капельницы используют для	
	введения реактивов малыми порциями, по каплям.	
Бюкса	Бюксы предназначены для взвешивания и хранения жидких и твёрдых веществ.	exima KUI 24/10

Часовое стекло	Часовые стекла используют для проведения реакций в малых объёмах (капельные реакции) и для взвешивания твёрдых веществ.	
Стеклянная палочка	Стеклянные палочки предназначены для перемешивания веществ в химической посуде.	
Холодильник	Холодильники применяются для охлаждения и конденсации паров, образующихся при нагревании различных веществ. При перегонке применяют прямые холодильники (Либиха), а при кипячении растворов и жидкостей, экстракции и других подобных процессах используют обратные холодильники.	

Кристаллизатор	Кристаллизаторы применяют для получения кристаллов веществ из насыщенных растворов или для охлаждения химических стаканов или колб с реагирующими веществами.	
Эксикатор	Эксикаторы применяют для медленного высушивания и хранения веществ, легко поглощающих влагу из воздуха. Нижнюю часть эксикатора заполняют водопоглощающими веществами (прокалённый хлорид кальция, концентрированная серная кислота, оксид фосфора и др.). Над поглотителем на фарфоровом вкладыше помещают бюксы или тигли с веществами, подлежащими осушке. Различают два основных типа эксикаторов: обычные эксикаторы и вакуум-эксикаторы.	

Аппарат Киппа используют для	F
получения водорода, сероводорода,	ah a
оксида углерода и других газов в	\P
лаборатории.	
	получения водорода, сероводорода, оксида углерода и других газов в

А4.2 Фарфоровая посуда

По сравнению со стеклянной фарфоровая посуда обладает большей химической устойчивостью к кислотам и щелочам, большей термостойкостью. Фарфоровые изделия можно нагревать до температуры около 1200С. Недостатком её является непрозрачность и сравнительно большая масса. Фарфоровая посуда разнообразна по форме и назначению.

Фарфоровый стакан	Фарфоровые стаканы могут	
	использоваться для хранения,	
	взвешивания, подогрева, смешивания	
	реактивов. Стаканы бывают различной	
	ёмкости, с ручкой и без ручки, с	
	носиком и без носика.	
		(20)

Фарфоровая кружка	Фарфоровые кружки, как правило, используют для сбора отходов реактивов. Кружки, как и другая химическая посуда, бывают различной ёмкости (обычно от 250 мл до 2 х литров).	
Выпарительная чашка	Выпарительные чашки используют для выделения твёрдых веществ из растворов. Для этой цели раствор в чашке нагревают, в результате чего происходит выпаривание воды.	
Тигль	Тигли применяют для прокаливания различных твёрдых веществ (осадков, минералов и т. п.), а также для сплавления и сжигания. При	

	прокаливании веществ на пламени газовой горелки тигли закрепляют в проволочных треугольниках с фарфоровыми трубками.	
Фарфоровая ступка	Фарфоровые ступки с пестиком применяют для измельчения твёрдых веществ. Перед работой ступка должна быть тщательно вымыта и высушена. Вещество насыпают в ступку в количестве не более 1/3 её объёма (иначе оно будет высыпаться из ступки при измельчении). При растворении твёрдого вещества в ступке (с одновременным растиранием) вначале насыпают твёрдое вещество, а затем к нему постепенно небольшими порциями при круговом движении пестика добавляют жидкость. Всю жидкость, которую берут для растворения, употреблять не следует: не менее 1/3 количества её оставляют для того, чтобы по окончании растворения сполоснуть ступку и обмыть пестик, после чего этот раствор добавляют к ранее полученному раствору.	

Фарфоровая ложка — шпатель	Фарфоровые ложки- шпатели применяют для отбора веществ, для снятия осадков с фильтров и при многих других работах.	

А4.3 Мерная посуда

Мерную посуду (мерные колбы, мерные цилиндры, мензурки, пипетки и др.) используют для измерения объёмов жидкостей.

Мерная колба	Мерные колбы служат для	
	приготовления растворов точной	
	концентрации и представляют собой	
	круглые плоскодонные колбы с	
	длинным и узким горлом, на котором	
	нанесена тонкая черта. Эта отметка	
	показывает границу, до которой следует	© cúmas 500 km 400 © cúmas 3000 km 2500 km 250
	наливать жидкость, чтобы её объём	23/32 - 300 - 2000
	соответствовал указанному на колбе	1500
	значению. Цифры на колбе показывают	
	объём жидкости (мл), на который она	
	рассчитана. Мерные колбы обычно	
	имеют притёртые пробки.	

Мерный цилиндр	Мерные цилиндры представляют	
	собой стеклянные сосуды, которые для	
	большей устойчивости имеют широкое	
	основание (дно) или специальную	100mi i III
	подставку. Снаружи на стенках	
	цилиндров нанесены деления,	Monta as S
	указывающие объём (в мл). Мерные	we was
	цилиндры бывают различной ёмкости:	
	от 5 мл до 2 л. Мерные цилиндры	
	предназначены для измерения (с	
	определённой погрешностью)	
	различных объёмов жидкости.	
Мензурка	Мензурки-сосуды конической формы с	
	делениями на стенке	10C11770-74 20'C 0 MJ 100
		80
		<u>60</u> 💩
		40
		10

Пипетка	Пипетки служат для отбора точно определенных относительно небольших объёмов жидкостей. Они представляют собой стеклянные трубки небольшого диаметра с делениями.	infantinifantinifantinifantinifantinifas 828
Бюретка	Бюретки служат для отмеривания точных объёмов жидкостей, преимущественно при химикоаналитических работах (титрование). Они могут иметь различную конструкцию и иметь разный объём.	

4.4 Металлическое оборудование

Штатив	Штативы. Ни одна химическая лаборатория не обходится без металлических штативов. Штатив состоит из чугунной подставки и вертикального металлического стержня, на котором с помощью муфт, лапок и	
	колец закрепляют различные приборы и химическую посуду — холодильники, колбы, делительные воронки и пр.	
Тренога	Треноги применяют в качестве подставок для различных приборов, колб и пр. Они особенно удобны при нагревании крупных по размеру колб и громоздких приборов.	

Держатель для пробирок	Держатели для пробирок приспособления, которые используются при непродолжительном нагревании пробирок.	
Пинцет	Пинцеты используют для захватывания мелких предметов, а также веществ, которые нельзя брать руками (например, металлический натрий).	

Тигельные щипцы	Тигельные щипцы применяют для захватывания горячих тиглей при извлечении их из муфельной печи, снятия раскаленных тиглей с фарфоровых треугольников и при всех работах, когда приходится иметь дело с раскалёнными предметами.	
Зажим	Зажимы — приспособления, используемые для зажимания резиновых трубок. Обычно применяют пружинные зажимы (зажимы Мора) и винтовые (зажимы Гофмана). Последние позволяют легко регулировать скорость вытекания жидкости или интенсивность прохождения газов.	

4.5 Оборудование для нагревания веществ

Многие опыты проводят при нагревании, для чего используют различные нагревательные приборы.

Спиртовка	Спиртовка используется для	
	нагревания небольших количеств	.95
	жидких и твёрдых веществ. В школьной	W
	химической лаборатории для нагревания	
	веществ чаще всего используется	
	именно спиртовка. В спиртовках горит	
	этиловый спирт. Пламя состоит из	
	нескольких зон, которые различаются по	
	окраске и температуре. Во внутренней	
	части пламени воздух смешивается с	
	парами спирта, но горение спирта ещё	
	не происходит. Средняя часть пламени	
	— светящаяся, в ней наблюдается	
	неполное сгорание топлива. Наиболее	
	горячей является внешняя часть	
	пламени, в которой происходит полное	
	сгорание топлива. Нагреваемый предмет	
	следует помещать в верхнюю части	
	пламени, где температура наивысшая.	

Горелка Бунзена	Горелка Бунзена обеспечивает	
	наиболее эффективное нагревание	·
	различных веществ.	A
		W _D -1EC
Электрическая плитка	Электрические плитки с закрытой	_
	спиралью используют для нагревания	
	горючих жидкостей (спирта, бензина,	
	ацетона), которые могут воспламениться	The state of the s
	при нагревании на открытом пламени.	0 M 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 324178268299309921576629244695660457501990498103

Владелец Булатова Наталья Владимировна

Действителен С 13.01.2023 по 13.01.2024